
AD-A262 894;i I'I I i 'ii r;; 11111 " ' I+ l iiit I lilt l, !11111 111111

NASA Contractor Report 191423

ICASE Report No. 93-2

I-CAS E 0
ON THE INITIAL STAGES OF VORTEX WAVE
INTERACTIONS IN HIGHLY CURVED BOUNDARY
LAYER FLOWS

Philip Hall

DTIQ
-ELECT riz,SAPRI 5199

NASA Contract Nos. NAS 1-19480 and NAS 1-18605 S Au
February 1993

Inatitute for Computer Applications in Science and Engineeirin
NASfA j..angey Research Center
1-t•4n, Virginia 23681-0001

00a by the Universities SpaceResearch Association

NatIond[ Aoronautlcs and -07848• u~co A!dministration •.93

LangIResearch Center
Himptn;h'Vlglnla 23681-0001 3 1? I

A 
ýj



ICASE Fluid Mechanics

Due to increasing research being conducted at ICASE in the field of fluid mechanics,

future ICASE reports in this area of research will be printed with a green cover. Applied

and numerical mathematics reports will have the familiar blue cover, while computer science

reports will have yellow covers. In all other aspects the reports will remain the same; in

particular, they will continue to be submitted to the appropriate journals or conferences for

formal publication.
Accesion For

NTIS CRA&I

DTIC TAB
Unannounced
Justification

Jusifca io ......... J.......... .. .. ..

By . -----------

Distribution I

Availability Codes

Avail and Ior
Dist Special

MTXC QUA=ITY ISPBI DA I



ON THE INITIAL STAGES OF VORTEX WAVE INTERACTIONS
IN HIGHLY CURVED BOUNDARY LAYER FLOWS

Philip Hall'
Department of Mathematics

University of Manchester
Manchester M13 9PL

UNITED KINGDOM

ABSTRACT

The nonlinear interaction equations describing vortex-Rayleigh wave interactions in highly

curved boundary layers are derived. These equations describe a strongly nonlinear interac-

tion between an inviscid wave system and a streamwise vortex. The coupling between the
two structures is quite different than that found by Hall and Smith (1991) in the absence

of wall curvature. Here the vortex is forced over a finite region of the flow rather than in
the critical layer associated with the wave system. When the interaction takes place the

wave system remains locally neutral as it moves downstream and it's self interaction drives
a vortex field of the same magnitude as that driven by th. vall curvature. This modification

of the mean state then alters the wave properties and forces the wave amplitude to adjust

itself in order that the wave frequency is constant. Solutions of the interaction equations

are found for the initial stages of the interaction in the case when the wave amplitude is

initially small. Our analysis suggests that finite amplitude disturbances can only exist when
the vortex field is finite at the initial position where the interaction is stimulated.
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NASA Contract Nos. NAq1-19480 and NAS1-18605 while the author was in residence at the Institute for
Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton,
VA 23681-0001. This work was also supported by SERC.
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1. Introduction

Our concern is with the interaction of Rayleigh waves and strearuwise vortices in pressure
gradient driven boundary layers on highly curved walls. The first step is to derive the coupled
strongly nonlinear interaction equations governing the small wavelength vortex field driven
by small amplitude Rayleigh waves. The interaction equations we obtain differ from those
found previously by Hall and Smith (1991). In the latter paper it was found that three-
dimensional Rayleigh waves drive the vortex field in the critical layer. The vortex field then
acts back on the wave indirectly because the wave satisfies a modified form of Rayleighs
equation which depends on the spanwise variation of the mean flow. Here we find that
the Rayleigh waves cannot drive the vortex field in the critical layer. Instead we find that
the forcing is distributed over the region where the vortex activity occurs, this enables us
to reduce the interaction problem to a nonlinear partial differential system independent of
the spanwise variable. We construct the small amplitude solutions of this system in two
situations and show that the possible emergence of the vortex-wave interaction is sensitively
controlled by the nature of the incoming mean profile.

The different stages of vortex-wave interactions associated with viscous (Tollmien-
Schlichting) travelling waves are described in the papers by Hall and Smith (1988, 1989,
1990, 1991), Smith and Walton (1989), Bassom and Hall (1989), Bennett, Hall and Smith
(1991) and Blackaby (1991). Typically it is found that Tollmien-Schlichting waves force the
vortex field in a thin viscous layer at the wall for external flows and away from the walls for
fully developed internal flows. For external flows the forcing results in an inhomogeneous
boundary condition for the vortex velocity component in the spanwise direction. The sit-
uation with Rayleigh waves is more complicated and Hall and Smith (1991) showed that
Rayleigh waves force the vortex in the critical layer associated with the wave. More pre-
cisely the wave induces a finite jump in the gradient of the spanwise velocity component of
the vortex across the critical layer. The solution of the interaction equations in this case
is made difficult by the spanwise and streamwise variation of the critical layer position; as
yet no numerical solutions of the interaction equations derived by Hall and Smith have been
obtained.

In the present paper we examine the Rayleigh wave-vortex interaction problem in the
case of highly curved boundary layers. This regime corresponds to high values of the G6rtler
number associated with the flow and we assume that the vortex wavelength is small compared
to the boundary layer thickness. The latter assumption enables us to make use of the small
wavelength large amplitude structure of vortices discussed by Hall and Lakin (1988). The
latter calculation was a development of the linear and weakly nonlinear investigations of
the G6rtler vortex mechanism by Hall (1982a,b). In the present calculation we show that
at small wavelengths the critical layer forcing of the vortex by Rayleigh waves becomes
exponentially small compared to a new distributed mechanism operational over a finite part
of the boundary layer. We shall see that the forcing is confined to the finite part of the
boundary layer where vortex activity occurs.

Th- approach of Hall and Lakin (1988) applied to the present problem shows that the
interaction equations can be significantly reduced to a stage where the spanwise dependence
of the disturbances is described analytically. The means that the strongly nonlinear interac-
tion equations for vortex-wave interactions at small wavelengths can be redlced to a partial



differential system dependent only on the two-dimensional boundary layer variables. These
interaction equations are derived in §2.

A non-trivial problem associated with the equations governing vortex-wave interactions
is the determination of appropriate initial conditions for the equations. In §3 we tackle
the problem for the case when a Rayleigh wave of small amplitude is generated from a
finite amplitude vortex field. We shall derive constraints on the vortex field which allow
for the emergence of a vortex-wave interaction. In §4 we investigate the possibility of the
spontaneous generation of Rayleigh waves and vortices at some position in the streamwise
direction. Our results suggest that the stringent constraints which must be satisfied if such
an interaction is to take place virtually rule out the spontaneous generation of Rayleigh
waves and vortices. In §5 we discuss the results of §3,4 and draw some conclusions.

2. Derivation of the Vortex-Wave Interaction Equations for Highly Curved Flows

We consider the flow of a viscous incompressible fluid of density p, kinematic viscos-
ity v past a rigid wall defined by y = 0 with respect to a coordinate system (x, y, z) with
x, y, z measuring distance along the wall, normal to the wall and in the spanwise direc-
tion respectively. We assume that x, y, z have been made dimensionless using the lengths
L, LR-1 /2, LR-'/ 2 where L is a lengthscale in the x-direction and R is defined by

R UoL (2.1)

Here U0 is a typical fluid speed in the x direction and the Reynolds number R is taken to
be large. If we take the wall curvature to be a-1 x(x) then the equations to determine the
combined G6rtler vortex-mean flow are

V • u* = 0,

u*. Vu* + xGu( = -p. + Au22
0 - p *.

In the above equations G is the Gfrtler number defined by

G = RI/2aL'

which is held fixed in the limit R -- oc, is the streamwise pressure gradient at the
edge of the boundary layer and u*, v*, w*,p* have been made dimensionless using the scales
Uo, Uo R-1/ 2 , UoR-/ 2 and pU~oR-1 respectively. Finally the operator A appearing in (2.2)
is the two-dimensional Laplacian a2 + 0. Thus streamwise diffusion is negligible in (2.2)
since it operates on a longer lengthscale than diffusion in the y, z directions. In addition,
p* is negligible so that (2.2) is parabolic in x, therefore no mechanism to produce upstream
influence is present.

In order to study the influence of vortex flows on the inviscid instability of shear flows
Hall and Horseman (1991) superimposed on the flow an infinitesimally small Rayleigh wave.
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Following these authors we therefore replace the functions u*, v*, w* used in the derivation
of (2.2) by writing

u* = u(x, y, z) + ,- [U(x, y, z)E + complex conjugate] +

v* = v(x,y,z)+8[V(x,y,z)E+ complex conjugate] +-.-, (2.3)

w* = w(x,y,z)+6[W(x,y,z)E+ complex conjugate]+...,

where
E = expiR/1 2 {fJ (x)dx - t}. (2.4)

Thus we have assumed that the disturbance, of arbitrarily small size 8, is periodic in time
(with t scaled on R-1/ 2Uol) and varies on a short O(R-'/ 2 ) lengthscale in the x direction.
Note that if 6 is sufficiently small then u, v, w satisfy (2.2) with the asterisks removed. The
equations satisfied by the disturbance in the limit R -- oo are found to be

iau + V; + W, = o,

ia(u - c)U + VU3, + Wu' = -ZaP,
(2.5)

ia(u - c)V =-P,

ia(u - c)W= -P,,

with c = c(x) = fl/a and P denoting the pressure perturbation corresponding to U, V, W.
A more convenient form of (2.5) is obtained by eliminating the velocity field U, V, W to give
the pressure form of the Rayleigh equation for longitudinal vortex flows; we thus obtain

p y +zp
(U -C)2 ) ,+(U -C)2) TU_ )2 =2.6a

and this must be solved with P periodic in z and subject to

Py=0, Y=0,
(2.6b, c)

P- 0, y -00.

For a given velocity field u(x, y, z) the eigenvalue problem (2.6) can be solved for a = a(Q, c),
and the flow is unstable if eigenvalues can be found with ai < 0. A similar eigenvalue problem
for the temporal instability problem with a real and c complex can also be used to classify
a given flow as stable or unstable. Using the latter approach Hall and Horseman (1991)
were able to show that G6rtler vortices cause a Blasius boundary layer to become inviscidly
unstable when they become of sufficiently large amplitude. The results found by the latter
authors were in excellent agreement with the experimental observations of Swearingen and
Blackwelder (1987).

In the context of vortex-wave interaction theory interest centres on the neutral solutions
of (2.6) which have a = a(x), ac = 11 = constant and 6 = 6(x) chosen to be large enough to
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maintain the wave in this neutral state as it moves downstream. In Hall and Smith (1991),
hereafter referred to as HS, it was shown that the forcing takes place in the critical layer and
leads to a jump in to, across the layer. However the expression for the jump in wy vanishes
if P is independent of z at the critical layer. This would for example be the case in the
degenerate case u = u(x, y) which applies when no vortices are present in the flow. Thus a
fundamental property of the interaction is that it can only occur when the streamwise flow
has a spanwise dependence.

In fact there exists a class of flows which support large amplitude streamwise vortices
over only a finite part of a boundary layer. If the critical layer associated with these flows
is in a region where no vortex activity occurs then the mechanism described in HS cannot
operate. The class of flows referred to above corresponds to the strongly nonlinear G~rtler
vortex flows first discussed by Hall and Lakin (1988). These flows correspond to the limit
- >> 1 (or equivalently x >> 1) and have the structure sketched in Figure (1.1).

In Regions I and II there is no vortex activity and at zeroth order the mean state simply
satisfies the equations governing the unperturbed boundary layer. In Region III, which
corresponds to y, < Y < Y2, a finite amplitude vortex exists and drives the mean state. The
vortex activity is reduced exponentially to zero in thin shear layers surrounding y4 and y2.
It follows that if we have a situation in which the critical layer of the system (2.6) associated
with the above flow is below y = yl, then an alternative mechanism to that proposed by
HS must be found. For the moment we assume that u(x,y,z) appearing in (2.2), with
(u*, v., w., p.) replaced by (u, v, w, p) has a region adjacent to y = 0 where it is independent
of z and that the critical layer occurs in this region. We now have a situation where thle
Rayleigh wave satisfying (2.6) cannot force the vortex flow in the manner discussed in HS
in the region of vortex activity.

In fact the vortex-wave interaction in such a case occurs in a simpler manner than that
found in HS. In order to allow the Rayleigh wave to drive the vortex we let 6 in (2.3)
increase until the nonlinear terms involving U, V, W in the y and z momentum equations
become comparable with those present for the vortex field. It is easy to see that this occurs
when 6 = R-' 2I with W of order R0. In this case the momentum equations in (2.2) are
modified to give

1 0( ( I
u.Vu+ xGu2 /2 -pY + Au -iUV + VV9 + WVý + c.c. , (2.7)

0 -pZ

-iauW + VW i + WW2 + c.c.

where 'c.c.' denotes 'complex conjugate.'
Thus the vortex field is now driven by the Rayleigh wave through the forcing terms on

the right hand side of (2.7). The Rayleigh wave is determined by (2.6) and so is itself a
function of u(x, y, z), thus there is a strongly nonlinear coupling between the vortex and
the wave fields. In order that the Rayleigh wave remains neutral as it moves downstream
the wavespeed adjust itself to the fluid speed at the inflection point. If the frequency is to
remain fixed then there is an apparent difficulty because the wavespeed and wavenumber
are effectively fixed by the previous consideration. The required extra degree of freedom is
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found by allowing W to adjust itself so as to modify the mean flow in such a way that the
frequency remains fixed.

We note that (2.7) fails if u = c in the region of vortex activity and in this case we return
to the situation discussed by HS. A further important point to notice here is that the size of
the Rayleigh wave, O(R-'/2 ), required to drive the interaction is so small that the Rayleigh
wave critical layer, of depth O(R-'/ 6), remains linear.

We now indicate how the short wavelength asymptotic structure given by Hall and Lakin
(1988) can be modified to take account of the forcing terms arising from the interaction of
the Rayleigh wave with itself. We assume that the vortex activity is confined to the region

Y1 < Y < Y2. Here we take the vortex wavenumber to be large and expand u, v, w, and p
appearing in (2.7) in the form

U : + .{, + uC,} + o(-I/k2 ),

v = kVc, 1+ Vo + V2 C2+ O(l1/k),
(2.8a, b, c, d)

w = WIS, + O(1/k),

p = kOpo + k 3 pi + k2p2 + k{p + CiPi} +"

Here C,, = cos nkz, S,. = sin nkz and the functions U0, Uo, etc. depend only on x and y.
The Rayleigh wave velocity components U, V, W appearing in (2.7) may be found from the
large k solution of (2.5). In order to determine this structure we expand the wavespeed c in
the form

c = CO + c,/k +.-. -(2.9)

and a similar expansion is written down for a. We assume that iio c Co in y, < y < Y2. We
then write

G=dk4+..- ,6=k 2 .

The appropriate expansions for U, V, W and P are

U = 0 ,c,+...,

v = -1fo+/iC,+...
(2.1Oa, b, c, d)

w = , s +

P = -- •

If we substitute the above expansions into (2.5) we find that Po satisfies the usual Rayleigh
pressure equation -

Po,, -2-o Po, ao = o, (2.1 na)
Uo -- co

where Vo is given by
Zao(0o - co)Vo = -PO'. (2.11b)
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At next order we find that

ia0o(J = -2 lVo_- o (U0 _ o) UV -

"o o - co)

- 2 1f,-,~oUV
UO1 To - Co o-Co I'

P, = 2ia1 {, U g - o_

We now substitute (2.8) into (2.7) and equate the leading order terms proportional to C, =

cos kz in the x and y momentum equations. This yields

v1iuoy = -U1

xNoU, 41Vf02•yU•, v1.

These equations have a consistent solution only if uo, Vro satisfy

"XGUoUoY 41 v° - 1. (2.12)
Uo -

This equation has to be solved in conjunction with the Rayleigh equation (2.11 a). In fact it

is convenient to write (2.11b) in terms of Po using (2.16) to give

4(o/- 2 4ifoy 1 0 = (2.13)
ao( go-co) 9_- co)2

In fact, since (2.11 a) does not involve derivatives with respect to x, we can multiply Po by

an arbitrary function of x, we therefore write oa = aoB-Po where the eigenfunction Po
satisfies (2.11a) together with

P0 , = 0, y = 0, Po - 0, y --+ oo, (2.14)

and some normalization coi.dition. We note also that without any loss of generality we can
take B, Po to be real. We then write (2.13) as

-2X•(o U/ •oB 2 Poy
xoU)y/2 - foB 2  

_oCo -1. (2.15)
-go - C oI ( -g o - )2  J y

Thus the outcome of the Rayleigh wave forcing is to introduce the term proportional to B2

in the local mean flow equation (2.15). This in effect means that Uo and P0 can only be
obtained numerically because (2.15) is coupled to (2.11). As in Hall and Lakin (1988) we
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note that the equations obtained by equating leading order vortex terms proportional to C1
do not determine the vortex. The required equation is obtained by equating leading order
terms independent of z in the x momentum equations, this gives

U + iUU - UOY, + P = a ( V2)

This equation can be integrated to give V,2 in the core, if the vortex is to vanish at Yi, Y2 we
must have

fy I (UoUo. + U:0O - Uoyy + pj:)dy = 0.

We shall now summarize the interaction equations and matching conditions which the mean
state and Rayleigh wave must satisfy if a vortex-wave interaction is to take place.

For convenience we now denote the zeroth order mean flow in Regions I, II, and III by
u(x, y) = (u(x, y), v(x, y), 0). We also denote the Rayleigh wavenumber and wavespeed at
zeroth order by a, c respectively. The zeroth order problem for the mean flow driven by the
vortex-wave interaction can then be written down in the form:
Regions I, II

U, + vy = 0,- ,V, (2.16a, b)lUU• + VUy -"-P + Uty )Y

Region III
UX -+ { } = 1 (2.17a, b)uy txGu - B-E-2f (,•-c2P " =1/(.ab

Y2 {uux +vu - u+ } = 0, (2.18)
Y1

together with the boundary conditions

u=v=O, y=O, ' (2.19)
U + Ue, y -+ 0,)

and matching conditions

u, u2 , v, P, P. continuous at y = Y1, Y2. (2.20)

We need not write down separate equations satisfied by P in I, II, III since, using the notation
used above, the single equation

(u - c)(PuY - a•2 P) - 2uyP, = O, (2.21)

together with
P=1, Y=y=, PY=O, y=O, P=O, y = Coo, (2.22)

where yc is the critical layer location are sufficient to determine P. Finally we note that
a(x),c(x) the eigenvalues of (2.21), (2.22) must satisfy

ac = constant,
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so that the wave frequency stays fixed as it moves downstream. In effect this constraint is
satisfied by adjusting the wave amplitude B(x) appropriately as x varies. We further note

that thin shear layers of thickness k3 are needed near Yl, Y2 in order to allow the vortices to
decay to zero exponentially. These layers are passive and require only minor modifications
to the structure given by Hall and Lakin (1988). An analysis in these shear layers shows
that below yl and above Y2 the vortices are smaller by a factor C-k raised to some positive
power. This -neans that the criical layer forcing mechanism discussed by HS is exponentially
small compared to the distributed mechanism discussed here.

Before investigating the growth of small amplitude Rayleigh waves from some position
along the flow direction we first discuss briefly how the eigenrelation associated with (2.21),
(2.22) can be calculated when u changes by a small amount. We shall assume then that u
can be written as

u = u(Y) + iL(Y),

and we suppose ft" is discontinuous at Yd. This discontinuity is associated with the transition
layers at yi, Y2. In these layers the jump in i" is smoothed out in the manner discussed by
Hall and Lakin (1988). However for simplicity we will assume below that there is just one
such location in the flow, later we will simply sum over all such locations.

We perturb a, c, Yd, and P by writing

a +

c = d+ a, (2.23a, b, c)Yd + ý••d,

P = P+P.

We assume that the quantities denoted by a tilde are smaller than those with a bar. The
equations satisfied by P, P are

(•- •)(7' - p2T) - 2U'P' = 0,
(2.24)

and~ Py = 0, y =0, P- 0, y -+ 00,

2 - } -1 2and
( -) - 2 'P'= - - + 2& e)Fl (2.25)

P = 0, y =0, P -- o, y -* 0c.

The system (2.24) constitutes an eigenvalue problem for Z with Z = U(y,) with y, defined by

W"(y,) = 0. The second system only has a solution if the appropriate orthogonality condition
is satisfied. However we confine our attention to constant frequency neutral modes so that
Z is given by

-- I -,I,

-u"uf + fl, (2.26)
C

Here a subscript c denotes a quantity evaluated at the critical layer. The wavenumber
perturbation & is then determined by

&C + &d = 0.
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Perhaps the easiest way to determine & is to integrate the differential equation for P once
by writing P = -PF(y). In order to write down the condition that the solution obtained in
this way is continuous across y = yc we first assume that in the neighborhood of yc, with

Y = y - Yc, S= 0 + ý01 + 9202 +"

(2.27a, b)

2! 3!

Here we have normalized P to unity at the critical layer. After some manipulation we find
that the condition to determine & is

$P 2&Z(i - Z)'P + 25 '-
-°4 -2•-P - C D -C D

I[ =_dy C + D +E (2.28)(a _ -- )3 ý3 y2 9
Y Y YC YC

where C, D, E are defined by

C = 2Q2Y1- 3[ - 0o]

D = /z 3 [Q3(c 0o) 2•2,i1]. (2.29a, b)

E = P [PdP"'t"(yd) - f-eli(Yd)

Here we have denoted quantities evaluated at Yd by a d subscript and [it"(y+) - ft"(y-)]
denotes the jump in i" across Yd. For a given profile ft we can compute & from (2.28) with
a given by (2.26), however in dLe vortex-wave interaction we have to maintain a constant
frequency for the wave as it moves downstream. Thus if ft represents the change in u over
some small distance in x then & determined in this way must satisfy

&E + ±iO = 0 (2.30)

and in general &, Z determined by (2.26), (2.28) will not satisfy this condition. Thus the role
of the wave forcing the mean state now becomes apparent since B(x), the Rayleigh wave
amplitude, must now adjust in order to enable us to satisfy this condition (2.30). Now we
shall investigate the possible growth of small but finite amplitude Rayleigh waves from a
strongly nonlinear vortex flow.

3. Small Amplitude Rayleigh Waves Bifurcating from Strongly Nonlinear Vortex
Flows

In the first instance we shall seek finite amplitude solutions of the interaction equations
(2.16) - (2.22) appropriate to the situation when the Rayleigh wave is small. The expansions
we develop are related to those given by Hall and Lakin (1988) for the case when no Rayleigh
forcing occurs. The major difference between the two expansion procedures is that the initial
vortex in the work of Hall and Lakin was calculated from the limiting form of the weakly
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nonlinear theory of Hall (1982b). Before discussing how we must incorporate the Rayleigh
wave into the expansions procedure we comment on the solution of (2.16) - (2.22) when
B=0.

Suppose then that at the initial location, taken without loss of generality to be x 1,
we have

U = u(y).

In the absence of any vortex activity the mean flow function u can be expanded in powers of
X = x - 1. we must however assume that C.'"(0) = 0 in order that no logarithmic terms occur
in the expansions. At first sight we would expect that the expansions of yi and Y2 should
proceed in powers of X. However, unless certain quite severe restrictions are imposed on u,
it can be shown that the required continuity and boundary conditions cannot be satisfied.
This occurs because the existence of a vortex X = 0 means that i, &Y are initially continuous
at yj, y.,. Thus the contributions to the matching conditions on it a small distance beyond
X = 0 arising from the perturbations to Yi,Y2 vanish at 0(X). In effect we must therefore
allow yt and y2 to be perturbed by 0(X 1 /2 ) so that the second order, ie 0(X), correction
terms come into play. We therefore write

yI = 1 + X 1 / 2 91 + X 12 +'",

(3.1a, b)

Y2 = Y2 + XI/'#21 + X922 +

and note that the special case yl = Y2 is discussed in the next section. We anticipate a similar
expansion for the Rayleigh disturbance amplitude whilst the wavenumber and wavespeed
expand in whole powers of X. We therefore write

B =XI/2B+ XB1 +

a = &±+ X&+.., (3.2a, b, c)

c = Xý+

with
ac± = 0, (3.3)

if the Rayleigh wave is to remain neutral and of constant frequency as it moves downstream.
In Regions I. 1Il we write

=1 •UB = it + XI + X 12 -+--

U = Vtf = i'+Xb1±+k"%.2 +-.., (3.4a, b,c)

p' = ,o + ,Xrl + X 27r2 + ...

whilst the wall curvature expands as

X = 1o + X, 1 + ,22 + "

I 0



If we substitute the above expansions into (2.16) and equate terms of O(X°) we obtain

fI + = 0,
(3.5a, b)

fi~ii +T'~ =ý -70 + fl,

so that in Regions 1, 111 the required solutions are

7I ,U + (7ro - •j)•o- dy

(3.6a, b)

f = Ji + iij [ro - "1,-i2dy,

with j = 1,2 and J1 , J2 constants to be determined.
In fact J1 is fixed by the condition t, = 0, y = 0, this gives

J, = l (iro- _i")ji- 2 dy. (3.7)

and we note that the above integral exists if we assume that ii" i7r, W" 0, y 0. In the
core region III we retain (3.4) and expand the Rayleigh pressure function P as

P=P+XP +... .

At zeroth order the coreflow downstream velocity component is given by

jj=VW +2 y

and the zeroth order approximations to (2.17a,b) yield

1 _K - BI(y) X1 "-+2y
is1 = • ,/A-2 2XOV '

iI=b VK {K -32I(y)} pB A+2yI'dy+
, 6xo(xoG)'

where

I(=) = _(xo) / VX oG)1 / 2) . (3.8a, b, c)

Here the constants A, B, K and b are to be determined. In fact the zeroth order approxima-
tions to the condition that T) is continuous at #. yield

v/AT+291(J 1 + K) -b/=o + -o (A + 2)

_/+2Qi(J2 + K- B21 2) = b GFo- p2 2  A+ 2y!'dy+ -!-(A+ 29,2 )'.
6Xo

(3.9a, b)
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In addition the continuity of u, uY at zeroth order at y = y1, Y2 yields

V____ =- f(Ym)' '"'(Yj) = 1 (3.1Oa, b)

We recall that J, must satisfy (3.7) in order that fL,(0) = 0, then (3.9a,b) determine b and
J 2 in terms of one remaining unknown constant K. We now use the coreflow expansion to
show that the zeroth order approximation to the vortex condition (2.18) is

r/- __ _ _ _2X___ 
_ _ _ 1 I]Y2

[bvyA+ 1 (A+ 2y)2x] A ] -2

2y -B•2 -+ 7,y.

where

Sj = FA +2#,.

and

I(S2 Si)=hiI(y)( A+2y2/VfA 2y -2)dy.

Hence the above equation together with (3.7), (3.9a,b) yield

b = b, _- 2 ,b,~~ V-OeI 1[S24S] + [sý S']- r(2 l
b, = : Yl - -s -s ±,

b -, bx'o - I ) xS2 (3.11a, b,c)
K = 1 (r° - U"i-2dY + 6Xi-I

J2 = -K + f2 12 + b 2 f 2  A I2y'dy x+5L•S2 S2  
6 Xo

We now substitute for utl from (3.6a) into (3.4a) and expand about y = y1, y2 to obtain

-2

U!/= S3 + J -±x/•tfj - i X "'ay -- ± y-- • -[r 0 - -lj'J

U O 4-. ,Yji + X •"9j2 + i"L- + - • - -iJt" +...
2U i i 2

(3.12a, b)

Here i, Ifi,, etc. denote fi'(9j), fi"(p,), etc. and the next order correction terms are 0(X3 /2).
If we perform similar expansions for the coreflow solution we obtain

S• ,XI/gj X I c;J 1

U - +- + _o__XX 1 [K + Yj2 - q 2 lj] _ -•_ _, +""

(3. 12c, d)
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If the initial profile is chosen such that Uj = Sj/\/XC, 'J = 1/$,3/•?) we see that the
order X°, X 1/ 2, terms in (3.12a) and (3.12c) are consistent whilst also are the order X0 terms
in (3.12b), (3.12d). However if we are to make u and uy consistent up to orders X, X 1/2

respectively then we have four equations to satisfy but only three unknowns Y11, Y21, B 2 at
our disposal. Thus we cannot in general make u, uy consistent at these orders and the only
possible remedy is to allow for diffusion layers of depth X1/2 in the neighborhood of y1,y 2.
However these layers occur only in I, II where the mean flow satisfies the boundary layer
equations. These blending layers occur where W - 0., and enable jumps in u, u. across the
layers to be accommodated.

We shall only consider the behavior near y = 92, a similar structure holds at y = .i. We
define a variable • by

= [Y - 2p2]X- 1 / 2 (2 )1/2

so that We modify (3.4a,b) near y = Y2 by writingax 49X 2X i9

U = UB + XU(,) +
(3.13a, b)

V = VS + X11 f() +.,

and it is straightforward to show that U, V satisfy

2" 2
(3.14c, d)

The solution of (3.14c) which decays when o __ co is
U-/4 = C2e-42/4U 5 , (3.15)

where U(a, x) denotes the parabolic cylinder function, C2 is a constant and ý2 = P21 (-)1/2.

The effect of this extra term in the expansion of u, uY near y2 is to produce terms

C2XU (•,2),- C2x/ 2 (V-n) U (3, 2) on the right hand sides of (3.12a,b) for j = 2.
A similar analyses near y = y1 produces similar terms. We are now in a position to make
(3.11a), (3.12a) consistent up to order X and (3.11b), (3.12b) consistent up to order X1/ 2.
This is achieved if

{ 2~J31 +i~ ir0  (2 --jj 7x____[ - B 1j] - 2X______Y + • ' J•gcsj2xov/•j¢

-2

is'~i(-1)i+' (2 7 / X-v s

(3.16a, b)

13



If C 1 , C2 are eliminated above we obtain

A, 2 [K - 7)1 [1U -WA-2 X, _ (il" 3 - ro) + i,"J, (3.17a)

with

Aj2=- + 1 2 -1)j U"-l2a•1 ) (3.17b, c)Vo-S) U (3,opG) ÷

In the absence of a Rayleigh wave, ie when B = 0, we can substitute for K from (3.12b) with
b given by (3.12a) to give a quadratic equation for yjj. In the presence of a Rayleigh wave
we can only express yjl in terms of B2. However if we now derive the condition that the
wave remains neutral up to O(X) then a further equation linking Yjl, B2 will be obtained.
In addition we note that if the initial data is such that Aj vanishes for j = 1,2 then the
expansions for yj proceed in whole powers of X.

If we use the result (2.29) applied to the O(X) correction to the mean velocity field we
find that

hi + Kh2 + B2h3 + J2 h4 + C1h5U(-,(-1)3 6) + C2 h6U(5 (-1I)') =0. (3.18)
2 2'

Here the constants hi, h2, h3 , h4, h5 , h6 are defined by

hi= P{( -f + 2- - (P' C D y + D

+10 - Y Py''h)

- - e)4/&2y-2 Y

1', 2PP' J - 2 _( - 2[)2]dy,
h (, 4 .Xo U+ f- 2PP' ([MI - 2i/1 I'

2P P[

92s =i Z)3a ii -)e)

h6 = - 2P2P

((,) -0 '

14
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with N7y) - (50 dy,
-I,

j( = iii 0 ii2

M(Y) = U 0t-T -sf ro- ill/)dy

and C, D given by (2.29) with Z = l - ,,,,ll and ii, given by (3.6a). Furthermore P,, P•

etc. denote P, P' evaluated at ýj. If we eliminate C1, C2 and J2 from (3.18) using (3.16b)
and (3.12c) we obtain

h7f3 2 = h8 + h5wlA 1911 + h6 w2 A2921 (3.19)

with

h7 =-I^VxoG{ -+~-}h 3 +h 4 {12 -J JWV'Y

+ XIS12 _ J1 21~/h8 = -h, - h2 J h4[b' + lS

I S 6Xo I 2  
6 Xo

h2 = h2 - h4 .

Finally we then substitute for f 2 from (3.19) into (3.17a) with j = 1,2 to give the coupled
equations for 911, y21:

A1  )I+ 9iiwi ( h7 } = hi° + h9h8h?' + w2A 2h6h9h91 921,

(3.20a, b)

A2  +1 h7 h ) = h12 + h1 1h8hh'7+

with

h b XS (bX"' - 7ro)
h9  S21= , ho S12 3XOV Xis

(3.21a, b, c, d)

1 I+ 2 b, xISh2 ( ro)

and I+defined by

I+ = VA + 2ydy

Thus the initial small amplitude form of the vortex and wave are determined at leading
order when the nonlinear equations (3.20a,b) are solved for i,,, 921. Note however that h8

appearing above is a quadratic function of these quantities whilst w1,w2 depend on P,1 92 1,

through parabolic cylinder functions so that the solution of (3.20) must be found numerically.
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A numerical example

In order to proceed further we must specify an initial velocity profile and curvature distribu-
tion. Without any loss of generality we may take Xo 1 and we then take the initial profile
it to be given by

• = )y + l'(y2 -_ 2y 4) } ,--- - 0 < Y < • =

- A-+ 2y Y1<Y<Y2= 2 ,

+ + I ex { Y Y A2 <Y< (3.22a, b, c)

Here the constant A is to be specified but we restrict our attention to situations when ii' is
always positive. In order that fit and fi, are continuous at the positions y = 91, Y2 we require
that A and G are defined by

(A (+A-(A )

1
G=( + + -

The profile defined above has an inflection point at y = so that the wavespeed is given by

A 
5

S=2 + 1--" (3.23)

The first step in the calculations is to solve Rayleigh's equation for P with i! and ý as given
by (3.22) and (3.23). In Figure (3.1) we show the wavenumber 6 as a function of A. The
eigenfunctions P associated with these modes are shown in Figure (3.2). Though it cannot
be seen easily in this figure we note that at the transition layers y1 , Y2 the quantities P, P'
are continuous whilst P" is discontinuous.

The constants hl, h2, etc appearing in (3.21) can then be determined using Simpsons Rule
to evaluate the integral and a routine to evaluate parabolic cylinder functions. This was done
using either the series or large argument asymptotic form of the parabolic cylinder functions
dependent on the size of the argument. The equations (3.21) were then solved using a Newton
iteration procedure. The calculations were restricted to the case A = .5,1, 1.5,2,2.5,3. but
different values of the curvature parameter X, were used. In Figures (3.3a,b,c) we show
the computed values of 91, ý2 and P 2 as functions of X1. The calculations were carried
out for the values of A used to calculate Figures (3.1,3.2) but in fact we were unable to
find solutions of (3.21) for the case A = .5. Furthermore the solutions shown could not be
extended beyond the ranges of X, shown. At the lower end of the ranges in question the
results showed that 911, Y21 were tending to a constant plus a multiple of the square root of
the difference between X, and it's cutoff value. This suggested to us that at such a point
two solutions of (3.21) were coalescing, however careful searches were unable to find a second
root. However it could well be that other roots exist but our Newton iteration procedure
was not able to detect them. Since the main aim of the present calculation was to determine
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whether physically acceptable solutions of the vortex-wave interaction equations could be
found near the position of neutral instability of a Rayleigh wave we did not investigate the
matter further.

In fact an inspection of Figure (3.3c) shows that B 2 is negative for a range of values of yi-
These solutions are not physically acceptable since B1 must be real. At first sight it might
appear that these solutions are relevant to the case when the Rayleigh wave is bifurcating
subcritically from x = 1. This is not the case since our expansion procedure cannot be
simply modified to take account of x - I being negative. This is because the blending layer
structure now has solutions increasing exponentially away from Yl, Y2 so that the matching
of u, uY, v cannot be achieved where I, II and II, III meet. Nevertheless we feel that the
solutions of (3,21) with negative B2 do have some physical significance; we return to that
point in the final section of this paper.

4. The Spontaneous Generation of Rayleigh Waves/Vortices

Suppose that we have an incoming inflectional velocity profile u = it(y) at x = 1. We
use the notation of the previous section and denote the critical level by y = y, and denote
quantities evaluated at the critical layer by a subscript c. We suppose further that the
position y = p at which Gutfiy = 1, where finite amplitude vortices emerge, is, without any
loss of generality, such that i > y, > 1.

In the first instance we ignore the mean flow correction driven by the vortex structure
and write U = ii + X•ii + X2 fL2 +."

V = f+ XV + X')2 +., (4.1a, b,c)

)p = 7r0 + X7r + X27r 2 +..,

where X = x - 1. The expansions for u, v fail when y = O(X'/ 3 ) where a passive boundary
layer is needed to satisfy the no-slip condition. It should be noted here that if cannot be
specified arbitrarily but must be determined in terms of the initial streaniwise profile ii(y).
If the above expansions are substituted into the boundary layer equations then we can show
that

ii + 0 tf, it r -+f", (4.2a, b)

and
2ii2 + v- = O, 2&12 + f±i + fii; + ýIjj = -_r, + fl'. (4.3a, b)

These equations can be integrated to give

V = iir7o - ii"]ir-2dy,

= JT[Or -iy +(4 .4 a , b )

1 = -u1 [7ro - fi"f] -it y +
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and

fy, ii ,2 7r,-u +ill +j2-+ f,'f- d

(4.4a, b)
[r, + fi12 - ii + -bf']f y+ .17 i1 iI+fy

Here we have made assumptions about the behavior of .i near y = 0 in order that the integrals
shown exist at y = 0. If these assumptions are not made then the solution for y = 0(1) must
have terms involving log X in its small X form. In view of the discussion given at the end
of the section 2 it follows that a and c for the Rayleigh wave associated with the perturbed
velocity profile (4.1) must expand as

a = &+&IX+&2X2+...,
(4.5a, b)

C = Z+ZlX+Z2X2+

If we use the notation of §2 then, in the absence of vortex activity, it follows that &1, cZ, &2 , Z2

are determined by
A2&j~(f1 - Z)P + 2fil u~IP1 + 2t'P' - -C 3  1)

- dy=--e+-), 21,2. (4.6)
1000_(•)2 2 y• Yc

Here Cj, Dj satisfy (2.29) with ( O - do) replaced by (aj - ij(yC)). However if the wave is to
remain neutral and of constant frequency we also require that

-I -II

C 1 = C +c
-Uc~l

C

C2 = - UI - - ý(5 + ll 2c,
jjtt I ~IIm u 2 iim u2", (4.7a, b, c, d)

I- -- -C

5•+&Cl = 0,

&1 1 + &2 e+ & 2 = 0.

The conditions (4.6), (4.7) impose a constraint on the initial profile u = ii(y) if the Rayleigh
wave is to stay neutral up to order X 2. Shortly we shall see how a small amplitude vortex
emanating from y = 9 changes this conclusion. An examination of the passive boundary
layer where y = O(Xl/3 ) shows that this layer does not influence (4.6), (4.7).

Now let us find the effect of a finite amplitude vortex on the above discussion. We
recall from the work of Hall and Lakin (1988) that, if Gi2iii = 1 at x = 1, then a finite
amplitude vortex will initially grow within the region -X 1/ 2g, + 9 < y < X 1 /291j + 9 for
small values of X. A result of some consequence for the present investigation is that the
mean flow modification driven by the vortex is O(X3 / 2) and confined to the same region
as the vortex. We shall choose B, the Rayleigh wave vortex amplitude to be of that size

18



which also leads to a mean flow modification of size X 3 !2 . The corresponding effect of this
mean flow correction on a and c can then be again deduced from (2.29) and (2.30). In fact
the size of this effect can be found directly from (2.29) by noting that ii is now a function
confined to a layer of depth O(X'1 2 ) well away from the critical layer. This means that the
only contribution to (2.29) from fi comes from the terms in the integrand proportional to
P'. Since ft -, O(X 3 /2 ) we should anticipate a contribution of this size to (2.29), however
we shall see below that some cancellation in the integral occurs so that only a contribution
of size O(X5 /2 ) is generated. Moreover since u- is exponentially small away from the critical
layer, the order X 112 correction terms in the expansions of a and c must be identically zero.
In this case the satisfaction of (2.29) is achieved by the adjustment of B(X).

We define a variable 0 by

O=- (y-9) (4.13)X1/2,

where
Gfit y=1, (fitiy)y=0, y--. (4.14)

We shall seek a solution of (2.16) - (2.20) by expanding

B= &X'/2 +..

and the velocity field in the form

U = UO0 + Xl/29u1 o + X {0 2 u 220 + Uo 1 } + X 3 /20Ull + X3/2uM(O) +

(4.15a, b)
v = Voo + X1/"0vo + X {f 2v2o + vO,} + X 3/12 v1, + XVM(O) +

Here the constants u0o, etc. are defined by

Uo0 = tt(y), U10 = W'(P) - -- , U2 0 = 2

u01 = fti(), U I = ) oo= = f)(9), V0 , (4.16a - i)

V2 = 2fi"(9), vo,(p) = fl(O), V1 =

Furthermore we assume that the wall curvature X expands locally as

X = Xo + XX + X2X2 +'". (4.17)

The Region III in this new notation is defined by

-OX' 1 2 < 0 < OX'1 2

whilst 1, 111 are determined by 0 > OXl/ 2 , 0 < -OX"1 2 respectively. Here 9 is a constant to
be determined and, because of symmetry, it will be sufficient for us to consider only 0 > 0.

In Region II we find, by equating successive powers of X1/ 2 in (2.17a), that

GXouoouo = 1,
U10 + 2 uoou2o = 0,
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-Xi aUM 302ULoU 20  Uo1 U _o
G2.uoo 0 + u11 + +

GXUOU 00 *U0O

where
U2 p,-(.-

IU00  { 1 P, ( ' ý') (4.1I8a, b, c, d)U~ [oo- ]

evaluated at y = y. Equations (4.18a,b) are automatically satisfied because of (4.14) and
(4.18c) can be integrated once to give

UM {A0 +±y02}0 - A,03, (4.19)

with
X1Uo UoIUo A o= (4.20)

Xo U00  U00

We have assumed above that UM is an odd function of 0 as was found to be the case by Hall
and Lakin (1988). Following Hall and Lakin we find that in Region I

(AoO + 7f320 - A,03) exp +iM[02 0- 1} U ( 0, /O)
UM = (4.21)

where we have already made u continuous at the junction of 1,11 and the continuity of uY at
the junction of I, II then yields

V-2 2 (, 2 0 #[Ao + A0 3B2 - A1 #2] (4.22)

In the absence of the Rayleigh wave forcing we can set B = 0, equation (4.22) then reduces
to the nonlinear eigenvalue problem for 0 found by Hall and Lakin (1988). Here equation
(4.22) is not sufficient to determine / 2 and 0, the required extra condition is obtained by
insisting that the O(Xa/ 2 ) mean flow correction in 1, 11, III does not make the Rayleigh
wave wavenumber or wavespeed vary. The effect of the mean flow correction can be seen
from equation (2.29). We expect that the term in (2.29) proportional to fi' will provide the
dominant contribution to the integral, this would suggests that the dominant contribution
to the integral would be of order X . However this contribution vanishes because UM itself
vanishes at infinity. Similarly the order X 2 contribution vanishes because UM is an odd
function of 0. Now we must set & = c = A = B = 0 because the mean flow correction is
exponentially small at the critical layer. Thus (2.29) leads to the equation

I OuM(O)dO =0. (4.23)000

We note also that the higher order mean flow correction terms also vanish at infinity and
are odd in 0 and therefore do not contribute to (4.23). In the derivation of (4.23) we have
used the result

j 02U'M(O)dO = -2 OuMdO
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Equation (4.23) yields

6__ ýyP (,~o 2 + A0 - 2A,0'2{2 Y2 5A0 (4.24)

Thus 0 and f3 are determined by the coupled system (4.22), (4.24), the system is simplified
by writing

U = o0 A, U00  (4.25a, b)
2' A2,

in which case we obtain the coupled system

B + o - a eu (2,e)
2 + +o -, 92 + u (+,) } (4.2

/f32 + Ao - Uý102 3 1 U 4 1+ (4.26a, b)

and if we multiply (4.26b) by 5 and add to (4.26a) we obtain

-3(l+ - (2) (4.27)

E(3 + 02) U (, o)

The right hand side of the above equation is always positive so there are no roots of the
equation for 0 positive. Since we have implicitly assumed above that 0 is positive we
conclude that there are no acceptable finite amplitude solutions of the interaction problem.
Thus we have found that small wavelength vortices and Rayleigh waves cannot spontaneously
be generated in a centrifugally and inviscidly unstable boundary layer. We conclude that
the only possibility is that described in the previous section where we showed that small
amplitude Rayleigh waves can be generated from an 0(1) vortex field.

5. Further discussion and conclusion
In Section 3 we saw that the initial stages of vortex-wave interactions in highly curved

boundary layers can be expressed in terms of an asymptotic expansion in powers of the
square root of the distance from the point of neutral stability. Our numerical investigations
of a class of initial profiles showed that in some cases the interaction cannot occur because
the predicted amplitude of the Rayleigh wave is imaginary. In nonlinear hydrodynamic
instability theory this would usually suggest that a subcritical finite amplitude instability
occurs. Here this is not the case because the blending layer structure fails when x < 1
because the parabolic cylinder functions now grow exponentially away from the transition
layers.

Thus the solutions obtained in Section 3 with P32 negative cannot be used to begin a
marching procedure to solve the full interaction equations. Nevertheless we believe that
these solutions are still of some interest and are indeed of particular physical importance.
This is because these solutions will play a crucial role when the streamwise lengthscale x - 1
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becomes sufficiently small for nonparallel effects to come into play; see Hall and Smith (1984)
for a related discussion in connection with Tollmien-Schlichting waves in growing boundary
layers. We do not address the nonparallel problem here but we note that nonparallel effects
come into play when x - 1 becomes so small that streamwise derivatives of the Rayleigh
wave amplitude balance with changes in the amplitude induced by the variation of the mean
state. In this case the interaction is governed by an integro-differential equation whose large
x asymptotic form reduces to the small x - 1 form found in Section :3. We believe that
the negative &2 solutions found in Section 3 lead to solutions of the nonparallel evolution

equations having a finite distance singularity. This would explain why they do not connect
with small x - 1 solutions, whilst we believe that the solutions obtained in Section 3 with
positive B2 can be connected with solutions of the evolution equations.

In Section 4 we investigated the special case which occurs when the interaction begins
with the vortex and Rayleigh wave both having small amplitudes. Here we found that the

nonlinear eigenrelation (4.27) does not have any real solution so that the interaction cannot
take place. We conclude that the spontaneous generation of Rayleigh waves and vortices
cannot occur so that the only possibility is that discussed by Hall and Lakin (1988) with
just a small amplitude vortex emerging from the neutral position. However there is again
a nonparallel evolution problem associated with the analysis of Section 4 if X becomes
sufficiently small. We expect that on the appropriately reduced streamwise lengthscale the
structure outlined in Section 4 can be modified to show that the spontaneous generation of
wave and vortices leads to a finite distance singularity.
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